The fractional maximal operator and fractional integrals on variable $L^p$ spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Integration Operator of Variable Order in the Holder Spaces

The fractional integrals I+(x)0 of variable order e(x) are considered. A theorem on mapping properties of Ia+ in Holder-type spaces H is proved, this being a generalization of the well known Hardy-Li ttlewood theorem. KEYWORDSFractional integration, variable fractional order, mapping properties, Holder continuous functions, Hardy-Littlewood theorem. 1991 AHS SUBJECT CLASSIFICATION CODES. 26 A33...

متن کامل

A Remark on Fractional Integrals on Modulation Spaces

where 0 < α < n. The well known Hardy-Littlewood-Sobolev theorem says that Iα is bounded from L(R) to L(R) when 1 < p < q < ∞ and 1/q = 1/p−α/n (see [6, Chapter 5, Theorem 1]). We can regard this theorem as information on how the operation of Iα changes the decay property of functions. On the other hand, the operator Iα can be understood as a differential operator of (−α)-th order since Îαf = |...

متن کامل

Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab

The term fractional calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to non-integer (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. In a letter to L’Hospital in 1695 Leibniz raised the following question (Miller and Ross...

متن کامل

Boundedness of the Fractional Maximal Operator in Local Morrey-type Spaces

The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.

متن کامل

A Sharp Rearrangement Inequality for Fractional Maximal Operator

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Iberoamericana

سال: 2007

ISSN: 0213-2230

DOI: 10.4171/rmi/511